Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth.

نویسندگان

  • Stephen W Martin
  • Lois M Douglas
  • James B Konopka
چکیده

The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional response of Candida parapsilosis following exposure to farnesol.

In Candida albicans, the quorum-sensing molecule farnesol inhibits the transition from yeast to hyphae but has no effect on cellular growth. We show that the addition of exogenous farnesol to cultures of Candida parapsilosis causes the cells to arrest, but not at a specific stage in the cell cycle. The cells are not susceptible to additional farnesol. However, the cells do eventually recover fr...

متن کامل

Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth.

Candida albicans is a pathogenic fungus able to change morphology in response to variations in its growth environment. Simple inoculation of stationary cells into fresh medium at 37 degrees C, without any other manipulations, appears to be a powerful but transient inducer of hyphal formation; this process also plays a significant role in classical serum induction of hyphal formation. The mechan...

متن کامل

Identification of Cell Cycle-Regulated, Putative Hyphal Genes in Candida Albicans

Candida albicans, a major fungal pathogen in human, can grow in a variety of morphological forms ranging from budding yeast to pseudohyphae and hyphae, and its ability to transition to true hyphae is critical for virulence in various types of C. albicans infections. Here, we identify 17 putative hyphal genes whose expression peaks during the S/G2 transition of the cell cycle in C. albicans . Th...

متن کامل

Candida albicans VAC8 is required for vacuolar inheritance and normal hyphal branching.

Hyphal growth is prevalent during most Candida albicans infections. Current cell division models, which are based on cytological analyses of C. albicans, predict that hyphal branching is intimately linked with vacuolar inheritance in this fungus. Here we report the molecular validation of this model, showing that a specific mutation that disrupts vacuolar inheritance also affects hyphal divisio...

متن کامل

The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans.

Formins are conserved eukaryotic proteins playing key roles in regulating cell polarity. We have characterized the roles of a formin CaBni1p in the polymorphic fungus Candida albicans. CaBni1p localized persistently to hyphal tips during hyphal growth but to distinct growth sites at different cell cycle stages during yeast growth. Cabni1Delta yeast cells exhibited several morphological defects,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2005